The new generation of wearable and flexible gadgets such as smart watches, glasses, and fitness trackers, all require batteries that are flexible and small enough to fit into these devices. This could give a big boost to the prospects for thin film and printed batteries, but it’s not yet clear which companies will benefit most, according to a new report from NanoMarkets. 

Existing thin film (TF) battery suppliers may be able to leverage their expertise, but OEMs are pursuing wearable applications and developing their own batteries, which poses a threat to existing TF battery suppliers.

While multiple large and influential companies are pursuing TF battery technology, two in particular seem well-positioned and motivated to go after the wearable electronics sector: LG Chemical and Apple.

LG Chemical has its eye on new battery technologies and announced at the end of last year that it had succeeded in producing batteries with different shapes. Among these are stepped batteries, a design that stacks two or more batteries on top of each other in a stepped configuration to adapt to mobile devices of various shapes, and curved batteries, which are a natural fit for curved devices. Stepped batteries may be helpful for mobile phones but are not especially desirable for wearable devices. Curved batteries could be an option but may not be flexible enough.

While LG is already manufacturing stepped and curved batteries, it has another technology in the works that seems perfectly suited for use in watch bands. The company is planning to produce cable batteries, which are flexible, waterproof, and can even be tied into a knot. This versatility makes them compatible with wearable devices, and they were in fact designed with exactly this market in mind.

Apple is almost certainly going to be a key influencer of the wearables market over the coming years, presumably through a smart watch project. The rumour mill has produced various possible concepts for an iWatch, and it’s hard to know what form such a watch will eventually take. But it will need a battery, and Apple’s patent application published in July 2013 detailing the creation of a flexible battery shape suggests Apple’s interest in producing the battery itself.

Apple’s patent, which was filed in December 2011, covers a flexible battery pack that consists of several different cells connected through a laminate layer and is designed to be able to conform to meet the needs of flexible electronic devices. The patent also allows for a battery pack where certain cells can be removed to incorporate cooling devices, flashes or cameras, allowing the battery to fit more snugly into a small space.

While not all of Apple’s many patents lead to products, this does point the way toward the company entering the flexible battery market. Perhaps Apple could license the concept for its flexible battery pack to a subcontractor, opening the door for a smaller company to benefit from growth in batteries for wearable devices. Existing TF battery manufacturers have been struggling for a long time to develop products that the market will want to buy, but there is a window of opportunity with the growth of new product segments such as wearables. Small battery companies do, however, face a real threat from OEMs and a risk that the larger companies may run them out of business. 

The story is not all gloomy, though, as there are multiple avenues the smaller firms can take. They may be able to forge partnerships with OEMs by convincing them that their years of expertise producing batteries are valuable. Such collaboration could take the form of a contract agreement, acquisition, or strategic investment from these influential firms.

If wearables eventually grab the interest of consumers the way cell phones have, the potential market is huge. This is likely to be some years off, but it is wise for battery manufacturers to plan ahead. Collaborating with OEMs can be a way for smaller firms to achieve the production volumes necessary to be considered a serious contender.

Regardless of whether TF battery manufacturers manage to succeed on their own or with the support of larger players, they will only be able to do so if they can provide batteries that are compatible with the needs of wearable devices. Flexibility alone is not sufficient, and suppliers that tried and failed to conquer the RFID space will need to develop new types of products that will work well in watches and other wearables. The companies who have been in the printed battery business the longest are not necessarily in a good position to succeed in getting their products into wearable devices.

Imprint Energy looks like the TF battery firm most likely to succeed in the wearable electronics market, because its printed zinc batteries can address the need to provide long-lasting, flexible batteries that can be recharged. The solid polymer electrolyte allows Imprint’s batteries to be rechargeable, something that has been a challenge for zinc batteries and is an enabling feature for wearable devices. Disposable printed batteries really aren’t suitable here.

Imprint’s Zincpoly technology is also less toxic compared to lithium ion batteries, a factor that is critical in medical implants but also provides an advantage in perception of safety for wearable devices marketed to consumers. This should help Imprint market its technology.

Although Imprint’s technology is compelling for the wearables market, it is a small company without the resources to scale up to high volume manufacturing.  A likely scenario is for it to follow the path of collaboration, either developing a partnership with a company that has sufficient manufacturing facilities or licensing its technology.

The market for batteries in wearable devices is currently relatively small, but NanoMarkets is forecasting significant growth in this sector, with revenue more than tripling over the next two years and increasing more dramatically through the end of the decade. This means potential opportunities for companies that can provide flexible, rechargeable batteries that can conform to whatever form factors the OEMs dream up and have reasonable power and battery life. If small companies want to get in on the action, they will need to act quickly before the OEMs start producing their own batteries custom-made to work with their specific products.